Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14611, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353051

RESUMO

AIMS: Basolateral amygdala (BLA), as a center for stress responses and emotional regulation, is involved in visceral hypersensitivity of irritable bowel syndrome (IBS) induced by stress. In the present study, we aimed to investigate the role of EphB2 receptor (EphB2) in BLA and explore the underlying mechanisms in this process. METHODS: Visceral hypersensitivity was induced by water avoidance stress (WAS). Elevated plus maze test, forced swimming test, and sucrose preference test were applied to assess anxiety- and depression-like behaviors. Ibotenic acid or lentivirus was used to inactivate BLA in either the induction or maintenance stage of visceral hypersensitivity. The expression of protein was determined by quantitative PCR, immunofluorescence, and western blot. RESULTS: EphB2 expression was increased in BLA in WAS rats. Inactivation of BLA or downregulation of EphB2 in BLA failed to induce visceral hypersensitivity as well as anxiety-like behaviors. However, during the maintenance stage of visceral pain, visceral hypersensitivity was only partially relieved but anxiety-like behaviors were abolished by inactivation of BLA or downregulation of EphB2 in BLA. Chronic WAS increased the expression of EphB2, N-methyl-D-aspartate receptors (NMDARs), and postsynaptic density protein (PSD95) in BLA. Downregulation of EphB2 in BLA reduced NMDARs and PSD95 expression in WAS rats. However, activation of NMDARs after the knockdown of EphB2 expression still triggered visceral hypersensitivity and anxiety-like behaviors. CONCLUSIONS: Taken together, the results suggest that EphB2 in BLA plays an essential role in inducing visceral hypersensitivity. In the maintenance stage, the involvement of EphB2 is crucial but not sufficient. The increase in EphB2 induced by WAS may enhance synaptic plasticity in BLA through upregulating NMDARs, which results in IBS-like symptoms. These findings may give insight into the treatment of IBS and related psychological distress.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Síndrome do Intestino Irritável , Dor Visceral , Animais , Ratos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/psicologia , Ratos Sprague-Dawley , Receptor EphB2/metabolismo , Estresse Psicológico/psicologia , Dor Visceral/metabolismo , Água/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G133-G146, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050686

RESUMO

Sex differences in visceral nociception have been reported in clinical and preclinical studies, but the potential differences in sensory neural encoding of the colorectum between males and females are not well understood. In this study, we systematically assessed sex differences in colorectal neural encoding by conducting high-throughput optical recordings in intact dorsal root ganglia (DRGs) from control and visceral hypersensitive mice. We found an apparent sex difference in zymosan-induced behavioral visceral hypersensitivity: enhanced visceromotor responses to colorectal distension were observed only in male mice, not in female mice. In addition, a higher number of mechanosensitive colorectal afferents were identified per mouse in the zymosan-treated male group than in the saline-treated male group, whereas the mechanosensitive afferents identified per mouse were comparable between the zymosan- and saline-treated female groups. The increased number of identified afferents in zymosan-treated male mice was predominantly from thoracolumbar (TL) innervation, which agrees with the significant increase in the TL afferent proportion in the zymosan group as compared with the control group in male mice. In contrast, female mice showed no difference in the proportion of colorectal neurons between saline- and zymosan-treated groups. Our results revealed a significant sex difference in colorectal afferent innervation and sensitization in the context of behavioral visceral hypersensitivity, which could drive differential clinical symptoms in male and female patients.NEW & NOTEWORTHY We used high-throughput GCaMP6f recordings to study 2,275 mechanosensitive colorectal afferents in mice. Our results revealed significant sex differences in the zymosan-induced behavioral visceral hypersensitivity, which were present in male but not female mice. Male mice also showed sensitization of colorectal afferents in the thoracolumbar pathway, whereas female mice did not. These findings highlight sex differences in sensory neural anatomy and function of the colorectum, with implications for sex-specific therapies for treating visceral pain.


Assuntos
Neoplasias Colorretais , Dor Visceral , Humanos , Feminino , Masculino , Camundongos , Animais , Reto/inervação , Colo/metabolismo , Zimosan/metabolismo , Caracteres Sexuais , Mecanotransdução Celular/fisiologia , Dor Visceral/metabolismo , Neoplasias Colorretais/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Aferentes/fisiologia
3.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G356-G367, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529842

RESUMO

Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.


Assuntos
Neoplasias Colorretais , Exossomos , Síndrome do Intestino Irritável , Dor Visceral , Camundongos , Animais , Giro do Cíngulo , Dor Visceral/metabolismo , Hiperalgesia/etiologia , Privação Materna , Exossomos/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/metabolismo
4.
Neuropsychopharmacology ; 48(12): 1778-1788, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37516802

RESUMO

Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.


Assuntos
Hormônio Liberador da Corticotropina , Dor Visceral , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Dor Visceral/metabolismo , Privação Materna , Neurônios/metabolismo
5.
Mol Pain ; 19: 17448069231170072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37002193

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for melatonin (MT) in sensitization of sodium channels in NCI rats. METHODS: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Nav1.8 and MT2. RESULTS: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. CONCLUSIONS: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.


Assuntos
Síndrome do Intestino Irritável , Melatonina , Dor Visceral , Ratos , Animais , Masculino , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Ratos Sprague-Dawley , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Dor Visceral/metabolismo , Nociceptividade , Receptor MT2 de Melatonina/metabolismo , Gânglios Espinais/metabolismo , Tetrodotoxina , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
6.
Oxid Med Cell Longev ; 2023: 4463063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713031

RESUMO

Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.


Assuntos
Eletroacupuntura , Doenças Inflamatórias Intestinais , Dor Visceral , Ratos , Animais , Ratos Sprague-Dawley , Dor Visceral/terapia , Dor Visceral/etiologia , Dor Visceral/metabolismo , Eletroacupuntura/métodos , Ácido Trinitrobenzenossulfônico , Qualidade de Vida , Doenças Inflamatórias Intestinais/complicações , Córtex Pré-Frontal/metabolismo , Glutamatos
7.
Acupunct Med ; 41(4): 224-234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957508

RESUMO

BACKGROUND: Electroacupuncture (EA) can effectively relieve visceral hypersensitivity (VH). However, its mechanisms are still unclear. OBJECTIVE: To investigate the impact of EA on VH caused by ileitis, and whether EA relieves VH by modulating the endogenous cannabinoid system (ECS). METHODS: Thirty male native goats were randomly divided into a saline-treated control group (Saline, n = 9) and three 2,4,6-trinitro-benzenesulfonic acid (TNBS)-treated VH model groups that underwent injection of TNBS into the ileal wall to induce VH and remained untreated (TNBS, n = 9) or received six sessions of EA (for 30 min every 3 days) (TNBS + EA, n = 6) or sham acupuncture (TNBS + Sham, n = 6). The visceromotor response (VMR) to colorectal distention (CRD) was measured after each EA treatment. Three goats in the Saline/TNBS groups were euthanized after 7 days for histopathological examination; the remaining 24 (n = 6/group) underwent sampling of the ileal wall, T11 spinal cord and brain nuclei/areas related to visceral regulation and ascending pain modulation system on day 22. Expression of cannabinoid receptor 1 (CB1R), fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) was detected by immunohistochemistry. RESULTS: VMR to CRD was greater in TNBS-treated goats than in saline-treated goats (p < 0.01) from day 7 to 22. After day 7, EA-treated goats showed a decreased (p < 0.05) VMR compared with untreated TNBS-exposed goats. TNBS treatment decreased CB1R and increased FAAH and MAGL expression in the ileum and related nuclei/areas; this was reversed by EA. CONCLUSION: EA ameliorates VH, probably by regulating the ECS in the intestine and nuclei/areas related to visceral regulation and descending pain modulation systems.


Assuntos
Canabinoides , Eletroacupuntura , Dor Visceral , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Dor Visceral/terapia , Dor Visceral/metabolismo , Cabras
8.
Purinergic Signal ; 19(1): 43-53, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35389158

RESUMO

This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.


Assuntos
Eletroacupuntura , Hipersensibilidade , Síndrome do Intestino Irritável , Dor Visceral , Ratos , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Astrócitos/metabolismo , Dor Visceral/metabolismo , Eletroacupuntura/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Hipersensibilidade/metabolismo , Analgésicos
9.
Purinergic Signal ; 19(1): 113-122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648361

RESUMO

Recent studies have demonstrated the vital role of P2X4 receptors (a family of ATP-gated non-selective cation channels) in the transmission of neuropathic and inflammatory pain. In this study, we investigated the role of spinal P2X4 receptors in chronic functional visceral hypersensitivity of neonatal maternal separation (NMS) rats. A rat model of irritable bowel syndrome was established by neonatal maternal separation. Visceral sensitivity was assessed by recording the response of the external oblique abdominal muscle to colorectal distension. P2X4 receptor antagonist and agonist were administrated intrathecally. The expression of P2X4 receptor was examined by Western Blot and immunofluorescence. The effect of P2X4 receptor antagonist on expression of brain-derived neurotrophic factor (BDNF) was assessed by Western Blot. We found neonatal maternal separation enhanced visceral hypersensitivity and increased the expression of P2X4 receptor in spinal thoracolumbar and lumbosacral segments of rats. Pharmacological results showed that visceral sensitivity was attenuated after intrathecal injection of P2X4 receptor antagonist, 5-BDBD, at doses of 10 nM or 100 nM, while visceral sensitivity was enhanced after intrathecal injection of P2X4 receptor agonist C5-TDS at doses of 10 µM or 15 µM. In addition, the spinal expression of BDNF significantly increased in NMS rats and intrathecal injection of 5-BDBD significantly decreased the expression of BDNF especially in NMS rats. C5-TDS failed to increase EMG amplitude in the presence of ANA-12 in control rats. Our results suggested the spinal P2X4 receptors played an important role in visceral hypersensitivity of NMS rats through BDNF.


Assuntos
Síndrome do Intestino Irritável , Dor Visceral , Ratos , Animais , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo , Receptores Purinérgicos P2X4 , Privação Materna , Antagonistas do Receptor Purinérgico P2X , Dor Visceral/metabolismo , Modelos Animais de Doenças
10.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548082

RESUMO

Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.


Assuntos
Células Enteroendócrinas , Receptores de Enterotoxina , Dor Visceral , Animais , Humanos , Camundongos , GMP Cíclico/metabolismo , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/fisiologia , Intestinos/metabolismo , Intestinos/fisiologia , Receptores de Enterotoxina/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Transdução de Sinais/fisiologia , Dor Visceral/genética , Dor Visceral/metabolismo
11.
Neuron ; 111(4): 526-538.e4, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563677

RESUMO

Inflammatory and functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and obstructive bowel disorder (OBD) underlie the most prevalent forms of visceral pain. Although visceral pain can be generally provoked by mechanical distension/stretch, the mechanisms that underlie visceral mechanosensitivity in colon-innervating visceral afferents remain elusive. Here, we show that virally mediated ablation of colon-innervating TRPV1-expressing nociceptors markedly reduces colorectal distention (CRD)-evoked visceromotor response (VMR) in mice. Selective ablation of the stretch-activated Piezo2 channels from TRPV1 lineage neurons substantially reduces mechanically evoked visceral afferent action potential firing and CRD-induced VMR under physiological conditions, as well as in mouse models of zymosan-induced IBS and partial colon obstruction (PCO). Collectively, our results demonstrate that mechanosensitive Piezo2 channels expressed by TRPV1-lineage nociceptors powerfully contribute to visceral mechanosensitivity and nociception under physiological conditions and visceral hypersensitivity under pathological conditions in mice, uncovering potential therapeutic targets for the treatment of visceral pain.


Assuntos
Canais Iônicos , Síndrome do Intestino Irritável , Dor Visceral , Animais , Camundongos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/metabolismo , Nociceptores/fisiologia , Canais de Cátion TRPV/genética , Dor Visceral/genética , Dor Visceral/metabolismo
12.
Comput Intell Neurosci ; 2022: 3755439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275969

RESUMO

Visceral pain is unbearable, and natural methods are needed to relieve it. Electroacupuncture is a relatively new technique that helps relieve visceral pain by improving blood circulation and providing energy to clogged parts of the body. However, its analgesic effect and mechanism in colorectal pain are still unknown. In this study, the visceral pain models of electroacupuncture in rats were compared and discussed, using nanocomponents to stimulate the expression and mechanism of the nerve growth factor in colorectal pain and electroacupuncture and to observe the expression and mechanism of nerve growth factor in visceral pain relief rats induced by nanocomponents and electroacupuncture. The results show that nanocomponents can effectively relieve visceral pain under the action of electroacupuncture. NGF can activate endogenous proliferation, migration, differentiation, and integration. NSC can promote nerve regeneration and recovery after injury.


Assuntos
Neoplasias Colorretais , Eletroacupuntura , Dor Visceral , Ratos , Animais , Dor Visceral/terapia , Dor Visceral/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Analgésicos
13.
J Neurosci ; 42(43): 8154-8168, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36100399

RESUMO

Chronic visceral pain is a major challenge for both patients and health providers. Although the central sensitization of the brain is thought to play an important role in the development of visceral pain, the detailed neural circuits remain largely unknown. Using a well-established chronic visceral hypersensitivity model induced by neonatal maternal deprivation (NMD) in male mice, we identified a distinct pathway whereby the claustrum (CL) glutamatergic neuron projecting to the anterior cingulate cortex (ACC) is critical for visceral pain but not for CFA-evoked inflammatory pain. By a combination of in vivo circuit-dissecting extracellular electrophysiological approaches and visceral pain related electromyographic (EMG) recordings, we demonstrated that optogenetic inhibition of CL glutamatergic activity suppressed the ACC neural activity and visceral hypersensitivity of NMD mice whereas selective activation of CL glutamatergic activity enhanced the ACC neural activity and evoked visceral pain of control mice. Further, optogenetic studies demonstrate a causal link between such neuronal activity and visceral pain behaviors. Chemogenetic activation or inhibition of ACC neural activities reversed the effects of optogenetic manipulation of CL neural activities on visceral pain responses. Importantly, molecular detection showed that NMD significantly enhances the expression of NMDA receptors and activated CaMKIIα in the ACC postsynaptic density (PSD) region. Together, our data establish a functional role for CL→ACC glutamatergic neurons in gating visceral pain, thus providing a potential treatment strategy for visceral pain.SIGNIFICANCE STATEMENT Studies have shown that sensitization of anterior cingulate cortex (ACC) plays an important role in chronic pain. However, it is as yet unknown whether there is a specific brain region and a distinct neural circuit that helps the ACC to distinguish visceral and somatic pain. The present study demonstrates that claustrum (CL) glutamatergic neurons maybe responding to colorectal distention (CRD) rather than somatic stimulation and that a CL glutamatergic projection to ACC glutamatergic neuron regulates visceral pain in mice. Furthermore, excessive NMDA receptors and overactive CaMKIIα in the ACC postsynaptic density (PSD) region were observed in mice with chronic visceral pain. Together, these findings reveal a novel neural circuity underlying the central sensitization of chronic visceral pain.


Assuntos
Claustrum , Dor Visceral , Ratos , Masculino , Camundongos , Animais , Giro do Cíngulo/fisiologia , Dor Visceral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ratos Sprague-Dawley
14.
Purinergic Signal ; 18(4): 499-514, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001278

RESUMO

Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor's role in distinct rat models of inflammatory and visceral hypersensitivity. Rats injected with CFA in the hindpaw displayed a marked reduction in hindpaw mechanical threshold, which was dose-dependently reversed by Lu AF27139 (3-30 mg/kg, p.o.). In rats injected with TNBS in the proximal colon, the colorectal distension threshold measured distally was significantly lower than sham treated rats at 7 days post-injection (P < 0.001), indicative of a marked central sensitization. Colonic hypersensitivity was also reversed by Lu AF27139 (10-100 mg/kg) and by the κ-opioid receptor agonist U-50,488H (3 mg/kg, s.c.). Moreover, both Lu AF27139 and U-50,488H prevented a TNBS-induced increase in spinal and brain levels of PGE2 and LTB4, as well as an increase in brain levels of PGF2α and TXB2. Lu AF27139 was well tolerated as revealed by a lack of significant effect on rotarod motor function and coordination at all doses tested up to 300 mg/kg. Thus, P2X7 receptor antagonism is efficacious in a rat model of visceral pain, via a mechanism which potentially involves attenuation of microglial function within spinal and/or supraspinal pain circuits, albeit a peripheral site of action cannot be excluded.


Assuntos
Hipersensibilidade , Dor Visceral , Animais , Ratos , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Doenças do Sistema Nervoso Central , Colo , Hipersensibilidade/metabolismo , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Dor Visceral/metabolismo
15.
J Physiol ; 600(16): 3819-3836, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775903

RESUMO

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Assuntos
Nociceptores , Dor Visceral , Animais , Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Camundongos , Nociceptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Dor Visceral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
CNS Neurosci Ther ; 28(9): 1393-1408, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35702948

RESUMO

AIMS: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). METHODS: Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1-SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT-PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. RESULTS: In neonatal-CRD-induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL-6 levels elevated in PVN. However, infusion of Epac agonist 8-pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV-SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL-6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI-09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL-6 into PVN simulated the visceral hypersensitivity. CONCLUSIONS: Inactivation of Epac1-SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Hiperalgesia , Enteropatias , Proteína 3 Supressora da Sinalização de Citocinas , Dor Visceral , Animais , Doenças do Colo/genética , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Hormônio Liberador da Corticotropina/metabolismo , Dilatação Patológica/complicações , Dilatação Patológica/genética , Dilatação Patológica/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Recém-Nascido , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/metabolismo , Interleucina-6/metabolismo , Enteropatias/complicações , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/patologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Neurônios/metabolismo , Dor , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Doenças Retais/genética , Doenças Retais/metabolismo , Doenças Retais/patologia , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Dor Visceral/etiologia , Dor Visceral/genética , Dor Visceral/metabolismo
17.
Acta Cir Bras ; 37(2): e370203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507967

RESUMO

PURPOSE: To analyze the effect and mechanism of dexmedetomidine (DEX) analgesia pretreatment on functional chronic visceral pain in rats. METHODS: Rats were divided into six groups: W1, W2, W3, W4, W5, and W6. The behavioral changes and electrophysiological indexes of rats in each group before and after DEX treatment were detected. RESULTS: The levels of abdominal withdrawal reflex (AWR) in W5 and W6 groups were significantly lower than those in group W3, while the levels of thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were significantly higher than those in group W3 (p < 0.05). The electromyographic signals of W1, W5, and W6 groups showed little fluctuation, while those of groups W2, W3, and W4 showed obvious fluctuation. TLR4 mRNA expression, IRF3, P65, and phosphorylation levels in W4, W5, and W6 groups were significantly lower than those in group W2 (p < 0.05). CONCLUSIONS: Dexmedetomidine epidural anesthesia pretreatment could significantly inhibit visceral pain response in rats with functional chronic visceral pain, and its mechanism was related to the activation of TLR4 in spinal dorsal horn tissue of rats and the activation inhibition of IRF3 and P65 in the downstream key signals.


Assuntos
Analgesia , Dor Crônica , Dexmedetomidina , Dor Visceral , Animais , Dor Crônica/tratamento farmacológico , Dexmedetomidina/farmacologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Dor Visceral/tratamento farmacológico , Dor Visceral/metabolismo
18.
Stress ; 25(1): 166-178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435121

RESUMO

Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.


Assuntos
Hiperalgesia , Dor Visceral , Animais , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor EphB2/genética , Receptor EphB2/metabolismo , Medula Espinal/metabolismo , Estresse Psicológico , Dor Visceral/genética , Dor Visceral/metabolismo
19.
Life Sci ; 295: 120419, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183555

RESUMO

AIMS: Sustained visceral hypersensitivity is a hallmark of irritable bowel syndrome (IBS) could be partially explained by enteric neural remodeling. Particularly, synaptic plasticity in the enteric nervous system, a form of enteric "memory", has been speculated as a participant in the pain maintenance in IBS. This study aimed to elucidate the role of ephrinB2/ephB2 in enteric synaptic plasticity and visceral pain in IBS. MATERIALS AND METHODS: EphrinB2/ephB2 expression and synaptic plasticity were assessed in colonic tissues from IBS patients, and rats induced by Trichinella spiralis infection and those treated with ephB2-Fc (an ephB2 receptor blocker) or ifenprodil (a selective NR2B antagonist). Furthermore, abdominal withdrawal reflex scores to colorectal distention and mesenteric afferent firing were assessed. EphrinB2-Fc(an ephB2 receptor activator) induced enteric synaptic plasticity was further evaluated in longitudinal muscle-myenteric plexus(LMMP) cultures and primary cultured myenteric neurons. KEY FINDINGS: EphrinB2/ephB2 was specifically expressed in colonic nerves and upregulated in IBS patients and rats, which was correlated with pain severity. The functional synaptic plasticity, visceral sensitivity to colorectal distention and colonic mesenteric afferent activity to mechanical and chemical stimulus were enhanced in IBS rats, and were blocked by ephB2-Fc or ifenprodil treatment. EphrinB2-Fc promoted the phosphorylation of NR2B in IBS rats and LMMP cultures, and could mediate sustained neural activation via increased [Ca2+]i and raised expression of synaptic plasticity-related early immediate genes, including c-fos and arc. SIGNIFICANCE: EphrinB2/ephB2 facilitated NR2B-mediated synaptic potentiation in the enteric nervous system that may be a novel explanation and potential therapeutic target for sustained pain hypersensitivity in IBS.


Assuntos
Efrina-B2/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Receptor EphB2/metabolismo , Adulto , Animais , China , Colo/metabolismo , Sistema Nervoso Entérico/fisiologia , Efrina-B2/fisiologia , Feminino , Humanos , Hiperalgesia/metabolismo , Síndrome do Intestino Irritável/metabolismo , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptor EphB2/fisiologia , Potenciais Sinápticos/fisiologia , Dor Visceral/metabolismo
20.
J Neuroinflammation ; 19(1): 7, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991641

RESUMO

BACKGROUND: Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS: The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS: Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION: The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.


Assuntos
Colite/metabolismo , Mucosa Intestinal/metabolismo , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Dor Visceral/metabolismo , Analgesia , Animais , Colite/genética , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Receptores Opioides delta/genética , Dor Visceral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...